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Abstract
We studied the energy spectrum of a spin lattice formed by m XY spin- 1

2 chains
with Ising inter-chain coupling. For strong ferromagnetic coupling we found
that the lowest-energy states for non-zero numbers of inverted spins on each XY
chain have n-magnon bound character if n = ml − 1, where l = 2, 3, . . .. For
a spin tube formed by three XY chains with strong ferromagnetic inter-chain
coupling, the lowest-energy states are described by the X X Z spin- 1

2 chain
model with antiferromagnetic coupling.

1. Introduction

Quasi-one-dimensional quantum spin systems such as spin ladders formed by a small number of
spin chains have been studied extensively in recent years [1–3]. These systems are relevant to a
number of quasi-one-dimensional compounds such as SrCu2O3, CuGeO3 (two-chain ladders)
and Sr2Cu3O5 (three-chain ladder). There is a family of compounds, La4n+4Cu2n+8O8n+14,
which, as special cases, contains four- and five-chain ladder structures [1]. According to the
theoretical predictions, isotropic Heisenberg even- and odd-chain spin- 1

2 ladders should have
surprisingly different properties [1, 4]; this has been confirmed experimentally. A large variety
of theoretical techniques, both analytical and numerical, have been used to study the ladder
systems. Nevertheless, there is relatively little information available concerning anisotropic
spin ladders. These systems may also exhibit unusual behaviour because of strong quantum
fluctuations in low dimensions. One such system is a ladder formed by two coupled XY spin- 1

2
chains with inter-chain interaction of the Ising type proposed by Shiba [5]. This model can be
reduced to a 1D Hubbard model by means of the Jordan–Wigner transformation [6], the exact
spectrum of which is available via the Bethe ansatz technique [7]. For a simple generalization
of the above ladder model to the case of different intra-chain exchange integrals, which is
of interest as a lattice model of spin-dependent hopping phenomena, there are only a few
conclusions regarding the exact energy spectrum and some numerical estimates available [8].

In this paper we will study the lowest-energy states of the anisotropic spin ladder system
formed by m spin- 1

2 XY chains (the m-chain ladder) with Ising-type interaction between
neighbour chains. First, we will give some general conclusions on the exact spectrum of
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Figure 1. The spin tube formed by five XY spin- 1
2 chains with inter-chain interaction of the Ising

type.

the model using a symmetry of the lattice Hamiltonian. To obtain more detailed information
concerning the energy spectrum we will use both perturbation theory (PT) in the limit of
strong inter-chain coupling and a numerical study using the density-matrix renormalization-
group method (DMRG). The main attention will be paid to the case of periodic boundaries
in the direction perpendicular to the XY chains. This permits us to skip some unimportant
but cumbersome details of the PT analysis. On the other hand, the corresponding lattice is of
interest as one of the simplest strongly correlated electron models of non-carbon nanotubes.

2. General properties of the model energy spectrum

Let us consider a spin lattice formed by m coupled XY spin- 1
2 chains described by the

Hamiltonian

H = −
N∑

i=1

m∑
j=1

{J0S
z
i, jS

z
i, j+1 + J1(S

x
i, jS

x
i+1, j + S

y
i, jS

y
i+1, j ) + 2µhSz

i, j }, (1)

where �Si, j = (Sx
i, j ,S

y
i, j ,Sz

i, j ) is a spin- 1
2 operator located on i th site of the j th chain.

�Si,m+1 ≡ �Si,1 because of the cylindrical form of the lattice (figure 1); µ is a Bohr magneton
and h is a longitudinal magnetic field.

Since the operators
∑

i Sz
i, j ( j = 1, 2, . . . , m) are integrals of motion, the eigenstates of (1)

can be characterized by setting m quantum numbers describing the numbers of inverted spins
on each XY chain. In the case of only one non-zero quantum number, the tube Hamiltonian
can be easily reduced to the exactly solvable XY chain model [9]. For two non-zero quantum
numbers that correspond to a pair of neighbouring XY chains, the model Hamiltonian is
equivalent to the linear Hubbard model in an external longitudinal magnetic field with a well
known exact solution [7].

To use the unitary transformation [9]

Sx
i, j → (−1)iSx

i, j , S
y
i, j → (−1)iS

y
i, j , Sz

i, j → Sz
i, j , (2)

we can change the sign of J1. Hence, the energy spectrum of (1) does not depend on the
sign of J1. We can choose this sign in such a way that in the space of the eigenfunctions of
the z-projection of the total spin, all non-diagonal elements of (1) have non-positive values.
On the other hand, for given values of the Hamiltonian parameters J0, J1 �= 0, and the set
of quantum numbers N j , the Hamiltonian matrix cannot be reduced to a block-diagonal form
by permutations of its rows. Therefore, according to Perron–Frobenius theorem, the lowest
eigenstate of (1) from the corresponding subspace is non-degenerate. For even N , a similar
conclusion is valid also for periodic boundaries along the XY chains (lattice on a torus). This
allows us to use translation symmetry of the lattice to investigate the nature of the excitation
spectrum—similarly to in the consideration of isotropic spin chains [9, 10]. To do this, let us
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consider the state

�k, j = exp

{
ik

N∑
n=1

nSz
n, j

}
�0 = Qk, j �0, k = 2π

N
λ, λ = 1, 2, . . . , (3)

where �0 is the lowest eigenstate of (1) in the subspace with specified values of the quantum
numbers N1, N2, . . . , Nm .

With the help of the unitary operator U that displaces all spins by one unit cell cyclically,
it can easily be shown that

〈�0|�k, j 〉 = 〈�0|UQk, j U
+|�0〉 = 〈�0|�k, j 〉 exp(ik N j ). (4)

Therefore, 〈�0|�k, j 〉 = 0 at 0 < N j < N . We omit here simple but cumbersome
manipulations with the spin operators; it can be shown that for large values of N and k = 2π/N ,

〈�k, j |H|�k, j 〉 = 〈�0|Q+
k, j HQk, j |�0〉 � 〈�0|H|�0〉 +

2π

N
|J1|. (5)

The average 〈�k, j |H|�k, j 〉 is an upper boundary for the exact energy of the first excited state
of H in the corresponding subspace. Therefore the relation (5) shows that the difference
in energy between the lowest-energy state and the first excited state from the subspace with
specified values of the quantum numbers N1, N2, . . . , Nm tends to zero in the thermodynamic
limit if at least one of this number satisfies the condition 0 < N j < N .

With the help of the identity Q+
k, j Ql, j = Ql−k, j it can also be shown that 〈�l, j |�k, j 〉 = 0

at |l − k|N j �= 2πn(n = 0, 1, 2, . . .). In other words, the functions �k are to be orthogonal
among themselves, for example, at small non-zero values of k �= l and N j . Therefore,
according to the variational description of the eigenvalues, there are quasi-continuous excitation
spectra in all the subspaces with 0 < N j � N .

The lattice Hamiltonian (1) is mapped to the 1D Hubbard-like model by means of Jordan–
Wigner transformation [6, 9]:

H = H1 − (J0 + 4µh)Nm

4
+ (J0 + 2µh)

m∑
j=1

N j ,

H1 = − 1
2

(N−1∑
i=1

m∑
j=1

J1a
+
i, jai+1, j + H.c.

)
− J0

N∑
i=1

m∑
j=1

a+
i, jai, ja

+
i, j+1ai, j+1.

(6)

Here a+
i j is a spinless Fermi operator describing the creation of a j -type particle on the i th 1D

lattice site. The number of j particles coincides with the number N j , and the total number
of particles in H1 coincides with the number of inverted spins

∑m
j=1 N j in Hamiltonian (1).

To apply the unitary hole–particle transformation for even j : ai j → (−1)ia+
i j , we can easily

show that, similar to the case for the ordinary 1D Hubbard model [7, 11], the energy spectrum
of H1 satisfies the following relation between positive and negative values of J0:

Ẽ(N1, N2, N3, . . . , Nm ; |J0|) = 2|J0|
m/2∑
i=1

N2i−1 + Ẽ(N1, N − N2, N3, . . . , N − Nm ; −|J0|).
(7)

Therefore, the energy spectrum of (1) in zero magnetic field for even m satisfies the following
simple relation:

E(N1, N2, N3, . . . , Nm ; |J0|) = E(N1, N − N2, N3, . . . , N − Nm ; −|J0|). (8)

It is easily seen that a similar relation is valid for a strip-type lattice formed by an arbitrary
number of XY chains.
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For more than two non-zero quantum numbers which correspond to the neighbouring XY
chains, we can find only some of the eigenstates of the Hamiltonian (1) by means of Bethe
ansatz. Let us consider for simplicity an infinite tube-type lattice formed by three XY chains.
The stationary states with three inverted spins (N1 = N2 = N3 = 1) obey the following set of
finite-difference equations:[
E − E f − 6µh − J0

(
3 − δm1,m2 − δm2,m3 − δm1,m3

)]
Am1m2m3 +

J1

2
(Am1+1m2m3

+ Am1−1m2m3 + Am1m2+1m3 Am1m2−1m3 + Am1m2m3+1 + Am1m2m3−1) = 0. (9)

Here E f = −3N(µh + J0/4) is the energy of the ‘ferromagnetic’ state (parallel orientation
of all spins), δm1,m2 is a Kronecker symbol, Am1m2m3 is the wavefunction in the lattice site
representation. The inequalities 2µh > |J1|, J0 > 0 are sufficient conditions for this
‘ferromagnetic’ state to be the ground state.

In each region mQ1 � mQ2 � mQ3, the Bethe-type wavefunction has the following form:

Am1,m2,m3 =
∑
P

aPQ exp[i(kP 1mQ1 + kP 2mQ2 + kP 3mQ3)], (10)

where P and Q are permutations of the quasi-momenta k1, k2, k3 and the coordinates m1, m2, m3

respectively. With the help of this function one can obtain only some of the possible solutions
due to the additional restriction Ammm = 0 which follows from (9), (10) at m1 = m2 = m3.
This is consistent with the statement of [12] concerning the failure of Bethe ansatz solutions
of generalizations of the Hubbard chain to arbitrary permutation symmetry. The Bethe ansatz
wavefunction describes only the states with scattering of three magnons and ‘partly bound’
states with scattering of a one-magnon state by a two-magnon bound state. The corresponding
energies of states with scattering are the sums of the one-magnon energies:

εk1k2k3 = εk1 + εk2 + εk3 , εk = 2µh + J0 − J1 cos k, −π � k < π. (11)

These states obey the Pauli exclusion principle. For ‘partly bound states’, energies are the
sums of energies of one-magnon states (εk) and energies of two-magnon bound states ε(b)

q :

εkq = εk + ε(b)
q

ε(b)
q = 4µh + 2J0 − |J0|

J0

(
J 2

0 + 4J 2
1 cos2

(
q

2

))1/2

, −π � q < π.
(12)

3. The case of strong ferromagnetic coupling

Let us first consider the lowest-energy states of the spin tube formed by three XY chains and
described by the Hamiltonian (1) at h = 0. The exact energy spectrum of the tube can be
characterized by three quantum numbers N1, N2 and N3 in accordance with the numbers of
inverted spins on each XY chain. In the case of J1 = 0 we have a system of non-interacting
unit cells (triangles) with a highly degenerate energy spectrum. For big negative values of
J0 and finite numbers of inverted spins, simple analysis shows that the lowest energy of the
infinite lattice at h = 0 has the form

E(N1, N2, N3) = E f + (J0 − |J1|)(N1 + N2 + N3). (13)

For positive values of J0 the structure of the energy spectrum is more complicated. If
N1 = N2 = N3 = 1 the lowest energy corresponds to the state with three inverted spins on
the same unit cell (the three-spin complex). For J1 = 0 such a state has the same energy
as a ferromagnetic state. For α = |J1/J0| � 1 the energy of a three-spin complex can be
estimated by means of PT for degenerate energy states. We omit here simple but cumbersome
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PT calculations; we found that the lowest energies of three-spin complex at h = 0 are described
by the formula

E3(k) = −|J1|{ 1
4 (3α + 5

16α3) + 3
8 (α2 − 1

4α4) cos k} + O(α5), −π < k � π. (14)

For simplicity, E f is chosen as a reference energy.
Note that the same formula for the energy can be easily obtained from (9) by making

successive approximations.
Let us now consider the energy states of a tube with an arbitrary number of three-spin

complexes. Up to third PT order in J1, these states are described by the following Hamiltonian:

H = −|J1|
∑

i

{ 3
4 αni (1 − ni+1) + 3

16α2(a+
i ai+1 + a+

i+1ai )} (15)

where a+
i is spinless Fermi operator describing the creation of a three-spin complex on the i th

unit cell; ni = a+
i ai .

With the help of Jordan–Wigner transformation it can be shown that H is equivalent to
the Hamiltonian of the linear antiferromagnetic X X Z spin- 1

2 chain:

H = 3

8

∑
i

{
2

J 2
1

J0

(
Sz

i · Sz
i+1 − 1

4

)
− J 3

1

J 2
0

(Sx
i · Sx

i+1 + S
y
i · S

y
i+1)

}
. (16)

Therefore the ground state of a tube at strong ferromagnetic coupling corresponds to the
subspace with the z-projection of total spin M = 0. In the presence of a longitudinal magnetic
field h there is a zero-temperature phase transition to the state with a maximum value of M at
h = 1

8µ
α|J1|.

The three-spin complex begins to interact with the one-magnon state only in second PT
order in J1. Therefore, if we add one inverted spin to the infinite system with one three-spin
complex, the lowest energy will correspond to the sum of the lowest energies of this complex
and that of the free one-magnon state (figure 2). The lowest one-magnon energy is equal to
J0 −|J1|. Therefore, the lowest energy of the infinite tube for the state with four inverted spins
has the form

E0
4 = E0

3 + J0 − |J1|. (17)

For five inverted spins in zero PT order in J1 the lowest energy corresponds to the configuration
with two-spin and three-spin complexes (figure 3). But these complexes interact in first PT
order in J1. The corresponding PT estimate for the lowest energy has the following form:

E0
5 = J0 − 0.5|J1| − 7J 2

1

8J0
+ O(J 3

1 ). (18)

Therefore the energy of five-magnon complex should be lower than the lowest energy of the
combination of isolated two-spin and three-spin complexes. For the case of six inverted spins
we have a configuration with two three-spin complexes (3 + 3) that interact in fourth PT order
in J1 only. Therefore for an infinite lattice the lowest energy of the state with six inverted spins
is equal to double the lowest energy of the three-spin complex. The case of seven inverted spins
is similar to the case of four inverted spins because the lowest zero-PT-order configuration has
the form (3 + 3 + 1). Only for eight inverted spins with zero-PT-order configuration (3 + 2 + 3)
do we have interaction in the first PT order in J1. Therefore the lowest energy of the state with
eight inverted spins corresponds to the eight-spin complex.

To generalize this consideration let us consider the lowest energy of the spin complex
formed by 3n + 2 inverted spins up to second PT order in J1:

E0
3n+2 = J0 − |J1| cos

(
π

n + 2

)
− J 2

1

2J0

[
1

n + 2
sin2

(
π

n + 2

)
+

3

2

]
. (19)
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Figure 2. The inverted spin distributions and the corresponding lowest energies for the three-chain
spin tube with N1 = 2, N2 = 1, N3 = 1 in the limit of strong ferromagnetic inter-chain coupling.
The dark circles correspond to the unit cells of the tube.

Figure 3. The inverted spin distributions and the corresponding lowest energies for the three-chain
spin tube with N1 = 2, N2 = 2, N3 = 1 in the limit of strong ferromagnetic inter-chain coupling.

To compare this energy with the sum of the lowest energies of the (3n − 1)-spin complex and
the single three-spin complex for large n, we obtain for the bound energy �E the following
expression:

�E = E0
3n+2 − E0

3 − E0
3n+1 = −|J1|π

2

n3
+

3

4

J 2
1

J0
. (20)
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Obviously the (3n + 2)-spin complex has the lowest energy in the corresponding subspace
only if �E < 0. Therefore the number n does not exceed the critical value

n∗ =
(

4π2

3α

)1/3

. (21)

Perturbative analysis of the bound character of the lowest-energy states can be easily
performed for the case of a spin tube or strip formed by m > 3 coupled XY chains. This leads
to the simple rule that the lowest-energy state with N inverted spins has a bound character if
N = ml − 1, with l = 2, 3, . . ..

4. DMRG study of the case of ferromagnetic coupling

In order to study the lowest-energy states of the three-chain spin tube in the case of an arbitrary
inter-chain coupling, we applied the standard infinite-system DMRG algorithm proposed by
White [13, 14]. The number of dominant density-matrix eigenstates r that were retained at each
DMRG iteration was varied from 16 to 64. The accuracy of the calculations decreased along
with the increase of the total number of inverted spins N . Thus, for appropriate accuracy of the
estimate of the lowest state energy for N = 3 and α = 0.2 it is sufficient to retain only 16 states
at each iteration. The increasing of the number of dominant states r to 64 does not change the
corresponding energy estimate to five digits. Note also that the PT expansion (14) gives for
this energy the estimate −E0

3/|J1| = 0.165 48 which is close to the DMRG estimate 0.165 43.
For N > 3 the value of r should be increased. We found that for N � 8, r = 40 provides
sufficient accuracy for lowest-state-energy estimates. We also found that the accuracy of the
calculations increases along with the decrease of α in the region (0.1 < α < 1). At α = 0.2 the
DMRG gives for the lowest energy of the state with n = 4 the estimate −E0

4/|J1| = 3.8347.
According to (17) this energy should be equal to 3.8346. The corresponding DMRG estimate
for the lowest energy of the state with six inverted spins shows that this energy is equal to
double the lowest energy for n = 3. So, our DMRG calculations agree well with the results
of PT analysis in the limit of strong ferromagnetic coupling.

We also study the dependence of the bound energy of the complexes of five and eight
inverted spins on the value of α (figure 4). The results of this study show that the corresponding
bound states appear only if the ferromagnetic coupling is sufficiently strong, in agreement with
PT analysis. Unfortunately, we could not check the accuracy of formula (21) because of a
convergence problem for big values of n.

5. Summary and conclusions

We performed analytical and numerical studies of the spectrum of the anisotropic spin lattice
formed by a finite number of XY spin- 1

2 chains with inter-chain interaction of Ising type. We
found the conditions for the absence of the energy gap in the exact spectrum for strip-type and
tube-type lattices formed by arbitrary numbers of infinite XY chains. For strong ferromagnetic
inter-chain coupling we found that the lowest-energy states with non-zero numbers of inverted
spins on each XY chain have n-magnon bound character if n = ml − 1, with l = 2, 3, . . ..
For the spin tube formed by three XY chains this conclusion is in a good agreement with the
results of numerical simulation of lowest-energy states by means of the DMRG method. The
perturbative analysis for this spin tube gives the condition at which the n-magnon bound state
corresponds to the lowest energy. The DMRG study for n = 5, 8 also demonstrates that the
lowest-energy states have bound character if the ferromagnetic inter-chain coupling exceeds
some critical value.
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α

Figure 4. The bound energies for the states with five and eight inverted spins as a function of α−1.

It is shown that the lowest-energy states of the spin tube formed by three chains with
strong inter-chain ferromagnetic coupling are described by the X X Z spin- 1

2 chain model with
antiferromagnetic coupling. Therefore there is a critical value of the longitudinal magnetic
field h ∼ J 2

1 /J0 at which the transition between the states with minimal and maximal values
of the z-projection of the total spin M appears.
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